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Abstract
We study a single particle which obeys non-relativistic quantum mechanics
in �N and has Hamiltonian H = −� + V (r), where V (r) = sgn(q)rq.

If N � 2, then q > −2, and if N = 1, then q > −1. The discrete
eigenvalues En� may be represented exactly by the semiclassical expression
En�(q) = minr>0{Pn�(q)2/r2 + V (r)}. The case q = 0 corresponds to
V (r) = ln(r). By writing one power as a smooth transformation of another,
and using envelope theory, it has earlier been proved that the Pn�(q) functions
are monotone increasing. Recent refinements to the comparison theorem of
QM in which comparison potentials can cross over, allow us to prove for
n = 1 that Q(q) = Z(q)P (q) is monotone increasing, even though the factor
Z(q) = (1 + q/N)1/q is monotone decreasing. Thus, P(q) cannot increase
too slowly. This result yields some sharper estimates for power-potential
eigenvalues at the bottom of each angular momentum subspace.

PACS number: 03.65.Ge

1. Introduction

In this paper we study a certain representation, the P-representation, for the Schrödinger
spectra generated by the power-law potentials f (r) = sgn(q)rq in N spatial dimensions.
Considerable interest has been shown in the Schrödinger spectra generated by this elementary
class of potentials [1–15]. The Hamiltonian H is given explicitly by

H = −� + v sgn(q)rq where r = ‖r‖ and v > 0 and q �= 0 (1.1a)

where q > −1 for N = 1, and q > −2 for N � 2. Corresponding to the case q = 0 we have

H = −� + v ln(r) v > 0. (1.1b)

It is certainly possible to include the log potential as a limiting case of the power potentials
if in place of the potential family f (r) = sgn(q)rq, we use V (r, q) = (rq − 1)/q whose
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limit as q → 0 is V (r, 0) = ln(r). However, we have chosen instead to leave the power
potentials themselves in their simplest form and incorporate the q → 0 limit smoothly in the
spectral domain by means of the P-representation. This limit will be discussed again in this
section, after the P-representation has been introduced. As with equation (1), our policy of
favouring simple powers will again lead to two equations instead of one at various points in
the development.

The operators H have domainsD(H) ⊂ L2(RN), they are bounded below, and essentially
self-adjoint. For the most part we shall be concerned with the cases N � 2, but we may also
include N = 1 provided q > −1. The one-dimensional hydrogen atom (N = 1, q = −1)

has been extensively studied [16–22] but requires special side conditions not consistent with
the class of problems we consider in this paper. For the operators we consider, the essential
spectrum is in (0,∞) and, by using a normalized Gaussian trial function φ, it is easy to select a
scale so that (φ,Hφ) < 0, thus establishing the existence of a discrete eigenvalue; for q > 0,

the entire spectrum is discrete [23]. The eigenvalues EN
n� for the power-law potential can be

labelled by two quantum numbers, the total angular momentum � = 0, 1, 2, . . . , and a ‘radial’
quantum number, n = 1, 2, 3, . . . , which represent 1 plus the number of nodes in the radial
part of the wavefunction. These eigenvalues satisfy the relation EN

n� � EN
m�, n < m. With our

labelling convention, the eigenvalue EN
n�(q) in N � 2 spatial dimensions has degeneracy 1 for

� = 0 and, for � > 0, the degeneracy is given [24] by the function �(N, �), where

�(N, �) = (2� + N − 2)(� + N − 3)!/{�!(N − 2)!} N � 2 � > 0. (1.2)

We first review some general elementary results for the power-law eigenvalues [2]. Nieto
and Simons [6] have proved that the eigenvalues En = E1

n0 for the power-law potentials in one
dimension increase with the quantum number n at a higher rate when q is greater. However,
for any q, this increase never attains n2, i.e., limn→∞ En/n2 = 0, q < ∞. In general, the
dependence of the eigenvalues EN

n� on the coupling parameter v may be established with the
aid of elementary scaling arguments in which r is replaced by σr, where σ > 0. We find that

EN
n�(v) = v2/(q+2)EN

n�(1). (1.3)

Thus, without loss of generality, we may limit further discussion to the case of unit coupling,
v = 1. We shall henceforth let an expression such as E(q) represent the dependence of an
eigenvalue of unit coupling on the power q.

We do have some exactly solvable potentials in N dimensions. For example, for the well-
known hydrogenic atom and the harmonic oscillator potentials we have for n = 1, 2, 3, . . . .

EN
n�(−1) = −[2(n + � + N/2 − 3/2)]−2 N � 2 (1.4)

and

EN
n�(2) = 4n + 2� + N − 4 N � 2 (1.5a)

and in one dimension (keeping n = 1, 2, 3, . . .)

En(2) = 2n − 1 N = 1. (1.5b)

Analytical solutions are also possible for the linear potential in one dimension, and for
the S states in three dimensions. For N = 1 and N = 3 the repulsive 1/r2 term in the
‘effective potential’ Veff(r) = (N − 1)(N − 3)/4r2, obtained using the transformation
ψ(r) = φ(r)/r(N−1)/2, is zero. The exact solution in these cases is in terms of the zeros
of Airy’s function Ai(r) in three dimensions and the zeros of the first derivative Ai′(r) of
Airy’s function in one dimension. We have

E1
n(v) = v

2
3 rn+1 Ai′(−rn+1) = 0 n = 0, 1, 2, . . . . (1.6)
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Figure 1. The first 30 eigenvalues En�(q), 1 � n � 5, 0 � � � 5, corresponding to the power
potential V (r) = sgn(q)rq in N = 3 dimensions. For q > 0, the eigenvalues increase with q from
1 to En�(2) = 4n + 2�−1; for q < 0, they decrease (as q increases) from En�(−1) = −[2(n+�)]−2

to −1. Both sets of curves increase with n and �.

E3
n0(v) = v

2
3 rn Ai(−rn) = 0 n = 1, 2, 3, . . . . (1.7)

Unfortunately, for N = 2 or N > 3, and for higher angular momenta � > 0 generally, exact
solutions are unavailable at this time. However, by using theorem 1 [25, theorem 2] we have
for N � 2 the general correspondence EN

n� = EN+2�
n0 . In figure 1 we exhibit the graphs of

the eigenvalues E3
n0(q) for n = 1, . . . , 5. In the limit q → ∞ the problem is equivalent to an

infinite square well with width 1 in N dimensions. Thus we have limq→∞
∣∣E3

n0(q)
∣∣ = (nπ)2.

For small values of q, the |E(q)| curves are asymptotically like |E(q)| ∼ C|q/2|q/2 and have
infinite slopes in the limit q → 0 [2, 26, 27].

The approach in the present paper is to study a representation for En�(q) which is smoother
and easier to approximate than the ‘raw’ eigenvalues themselves. We shall write many of our
equations for the case N � 2: they are also valid for N = 1 provided q > −1. In both cases
we keep the convention n = 1, 2, 3, . . . . We have

EN
n� = min

r>0

{(
PN

n�(q)

r

)2

+ sgn(q)rq

}
q > −2 q �= 0 (1.8a)

and

EN
n� = min

r>0

{(
PN

n�(0)

r

)2

+ ln(r)

}
. (1.8b)

The form of this representation, in which the kinetic energy is represented by P 2/r2 and the
power potential is represented by itself, is what leads us to use the term ‘semiclassical’ in the
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title of the paper: the two parts of the quantum mechanical problem are replaced by simple real
functions of r, scaling as the classical terms would scale, and their sum is exactly equal to the
quantum mechanical energy. This is a quite different use of the term ‘semiclassical’ from that
describing a reformulation of the quantum mechanical problem itself. Such a method is the
JWKB approximation which has been applied to estimate the pure-power spectra [12, 13] and
could in principle therefore be employed to approximatePN

n�(q): however, this approach would
not yield exact analytical information about the P-functions, such as bounds or convexity. The
existence of the representation P(q) for E(q) is guaranteed because the functions

g(P, q) = min
r>0

{(
P

r

)2

+ sgn(q)rq

}
= sgn(q)

(
1 +

q

2

)(
2P 2

|q|
) q

2+q

q > −2 q �= 0

(1.9a)

and

g(P, 0) = min
r>0

{(
P

r

)2

+ ln(r)

}
= 1

2
(1 + ln(2)) + ln(P ). (1.9b)

are monotone increasing in P. Indeed we find

∂g

∂P
(P, q) = P

q

2+q

( |q|
2P

) 2
q+2

> 0 q > −2 q �= 0 (1.10a)

and
∂g

∂P
(P, 0) = 1

P
> 0. (1.10b)

From (1.4) and (1.5) we find

PN
n�(−1) = (n + � + N/2 − 3/2) N � 2 (1.11)

and

PN
n�(2) = (2n + � + N/2 − 2) N � 2 (1.12a)

and in one dimension (keeping n = 1, 2, 3, . . .)

Pn(2) = (
n − 1

2

)
N = 1. (1.12b)

In table 1 we exhibit some numerical values for PN
n�(1). The case q = 0 corresponds exactly

to the ln(r) potential [26]. In this paper we shall denote by E(q) and P(q) the ground-state
eigenvalues and P-functions in N dimensions.

We now return briefly to the question of considering the log potential as the limit of the
family V (r, q) = (rq − 1)/q, as q → 0, where we define V (r, 0) = ln(r). A useful feature of
the P-representation is that, for a given eigenvalue, only one P-number is required to determine
the eigenvalue E corresponding to the ‘scaled’ power potential A + B sgn(q)rq, B > 0. Thus,
we may write (exactly)

EN
n�(A,B, q) = min

r>0

{(
PN

n�(q)

r

)2

+ A + B sgn(q)rq

}
q > −2 q �= 0 B > 0.

(1.13)

In particular, with A = −1/q,B = 1/|q| we have

V (r, q) = (rq − 1)/q ⇒ EN
n�(q) = min

r>0

{(
PN

n�(q)

r

)2

+
rq − 1

q

}
q > −2 q �= 0.

(1.14)
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Table 1. The ‘input’ P-values P N
n0(1) used in the general formula (1.8), for N = 2, 3, . . . , 12. The

same data apply to � > 0 since, by theorem 1, we have P N
n� = P N+2�

n0 .

N n = 1 n = 2 n = 3 n = 4

2 0.9348 2.8063 4.6249 6.4416
3 1.3761 3.1813 4.9926 6.8051
4 1.8735 3.6657 5.4700 7.2783
5 2.3719 4.1550 5.9530 7.7570
6 2.8709 4.6472 6.4398 8.2396
7 3.3702 5.1413 6.9291 8.7251
8 3.8696 5.6367 7.4204 9.2129
9 4.3692 6.1330 7.9130 9.7024

10 4.8689 6.6299 8.4068 10.1932
11 5.3686 7.1274 8.9053 10.7453
12 5.8684 7.6253 9.4045 11.2744

Provided P(q) is continuous, it follows immediately from (1.14) that

V (r) = ln(r) ⇒ EN
n� = min

r>0

{(
PN

n�(0)

r

)2

+ ln(r)

}
. (1.15)

As we mentioned above, the continuity (in fact, monotonicity) of PN
n�(q) was proved in [2].

It is our opinion that the advantage of accommodating this limit easily does not justify the
concomitant complication of having to work, for example, with a harmonic oscillator having
the form V (r, 2) = (r2 − 1)/2.

For N � 2, the P-numbers and the underlying eigenvalues EN
n� satisfy the relation

PN
n� = PN+2�

n0 . This result is obtained using the following theorem.

Theorem 1 (25, theorem 2). Suppose that H = −� + V (r), where V (r) is a central potential
in N � 2 dimensions, has a discrete eigenvalue EN

n�, then EN
n� = EN+2�

n0 . This theorem
expresses the invariance of the eigenvalues with respect to changes in � and N that leave the
sum N + 2� invariant.

The advantage of the P-representation is illustrated by comparing figure 1 with figure 2
which show, respectively, the eigenvalues En�(q) and the corresponding P-representations
Pn�(q) for the case N = 3. The P-functions of figure 2 are evidently monotone increasing.
This property has been proved mathematically by means of the envelope theory [2]: one power
q was written as a smooth transformation of another p, and then the limit p → q was taken
in the P-picture. The infinite slopes of E(q) at q = 0, mentioned above, are not visible in
figure 1 because the approach of the slopes to infinity is very slow for such functions: if , for
example, we consider [27] the function f (q) = |q|q, then, although f ′(0) = −∞, we have
f ′(10−5) ≈ −10.51.

The principal result of the present paper is theorem 4, to the effect that for N � 1,Q(q) =
Z(q)P (q) is monotone increasing, where Z(q) = (1 + q/N)

1
q : this result is stronger than

the monotonicity of P(q) because the factor Z(p) is decreasing; thus we know more about
P(q) than we did. This theorem is proved in section 2 and principally concerns the power-law
potentials, but also treats the log case by the use of the limit q → 0 and continuity. As
consequences of theorem 4 we shall be able to derive some specific formulae for upper and
lower bounds for the power-law energy eigenvalues, by using nearby comparisons. However,
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Figure 2. In the P-representation, the same set of 30 eigenvalues shown in figure (1) now lie on
monotone smooth curves. The log-power theorem states that the P-values for the log potential
are precisely Pn�(0). As q increases from −1 to 2, the degeneracy of the Coulomb problem
Pn�(−1) = n + � evolves into the degeneracy of the harmonic oscillator Pn�(2) = 2n + � − 1

2 .

it should be clearly emphasized at this point that the main purpose of the present paper is to
strengthen our knowledge of the monotone function P(q).

Theorem 4 has been made possible by the emergence of generalized comparison theorems
that allow comparison potentials to cross over and still predict spectral ordering. In section 2
we restate the generalized comparison theorem (theorem 4, of [25]) which becomes theorem 2
here, and we state theorem 3 (theorem 7, of [25]), which provides explicit sufficient conditions
for the application of theorem 3 under a variety of potential crossing schemes. Theorem 3
allows us to prove our main result, theorem 4. In section 3, we use theorem 4 to prove
theorem 5 which sharpens the envelope bounds found earlier in [2]. The earlier result used
‘envelope theory’ based on the ‘standard’ comparison theorem, which may be written as
V1 < V2 ⇒ E[V1] < E[V2]. As an illustration of theorem 5 we apply it to generate spectral
bounds for the bottom of the spectrum of −� + r

3
2 in dimensions N = 3 . . . 10.

2. Power-law potentials and generalized comparison theorems

We now discuss the generalized comparison theorems which we shall apply to obtain our
main result. We consider the two eigenproblems (−� + V1(r))ψ1(r) = E[V1]ψ1(r) and
(−� + V2(r))ψ2(r) = E[V2]ψ2(r) in N � 1 dimensions, where ψi(r), i = 1, 2, are the
respective ground states (or the bottoms of angular momentum subspaces labelled by a fixed
� � 0).

Theorem 2 (25, theorem 4).

k(r) =
∫ r

0
[V1(t) − V2(t)]ψi(t)t

N−1 dt < 0 ∀r > 0

i = 1 or 2 ⇒ E[V1] < E[V2]. (2.1)
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We have stated this theorem (and the following theorem) with strict inequalities: the proofs
are essentially the same as given in [25]. It may be difficult to apply theorem 2 in practice
since the positivity of the function k(r) depends on the detailed properties of the comparison
potentials. Thus, it is helpful to have simpler sufficient conditions, depending on the number
and nature of the crossings over of the two comparison potentials. In particular we shall
employ the case of two crossings, and sufficient conditions not involving the wavefunction.
Thus, we have

Theorem 3 (25, theorem 7). If the potentials V1(r) and V2(r) cross twice for r > 0 at
r = r1, r2 (r1 < r2) with

(i) V1(r) < V2(r) for 0 < r < r1 and

(ii)
∫ r2

0 [V1(t) − V2(t)]tN−1 dt = 0

then,

k(r) =
∫ r

0
[V1(t) − V2(t)]ψi(t)t

N−1 dt < 0 ∀r > 0 i = 1 or 2 (2.2)

from which E[V1] < E[V2] follows, by theorem 2.

Now we shall use the generalized comparison theorems to prove the monotonicity of a
new function Q(q), which does not ‘vary’ so much as the function P(q). As a consequence,
we shall be able to derive specific formulae for upper and lower bounds for the power-law
energy eigenvalues. We are able to prove the following:

Theorem 4. P(q) represents via (1.8) the bottom E(q) of the spectrum of H =
−� + sgn(q)rq , where q �= 0, and q > −2, in N � 2 dimensions (or q > −1 for
N = 1). Define Q(q) = (1 + q/N)1/qP (q), and Q(0) = limq→0 Q(q) = e1/NP (0), then
Q(q) is monotone increasing for N � 2, q > −2 (or N = 1, q > −1).

Proof. Let p > q, p, q > −2 for N � 2 and p, q > −1 for N = 1. We shall first
suppose p �= 0 and q �= 0. Our goal is to prove that Q(p) > Q(q). Assume that
V1(r) = A + B sgn(p)rp and V2(r) = sgn(q)rq. Now, we choose A and B so that the
potentials V1(r) and V2(r) cross over exactly twice, as illustrated in figure 3. Let A1 and B1

represent the absolute values of the areas between the potentials. We vary A and B so that
A1 = B1. Then theorem 3 implies E[V1] � (�)E[V2] depending, as r increases from zero,
on which potential lies beneath the other when they first differ. Without loss of generality, we
will assume, in this sense, that V1 starts above V2; this leads to an upper bound. Since V1(r)

is designed to intersect V2(r) exactly twice, we shall have two equations to solve to provide
sufficient conditions for a bound

V1(R) = V2(R) ⇒ A + B sgn(p)Rp = sgn(q)Rq (2.3a)

and∫ R

0
[V1(r) − V2(r)]rN−1 dr = 0 ⇒ A

RN

N
+ B sgn(p)

Rp+N

p + N
− sgn(q)

Rq+N

q + N
= 0

(2.3b)

where R is the second potential intersection point. We let t = Rp/q and, solve (2.3a) and
(2.3b) for A(t) and B(t), to find

A(t) = sgn(q)Ntq
2/p(p − q)

p(q + N)
(2.4)
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Figure 3. The shifted linear potential V1(r) = A + Brp used to estimate an upper bound for the
eigenvalues corresponding to the potential V2(r) = rq . A1 and B1 are the absolute values of the
inter-potential areas. We vary A and B so that A1 = B1, where R is the second intersection point.
Thereafter, theorem 3 implies that E[V2] � E[V1]. This result is used to prove the monotonicity
of Q(q).

B(t) = |q|(p + N)

|p|(N + q)tq/p(p−q)
. (2.5)

Without loss of generality, we may consider only the case when p and q > 0, since the proof
of the other cases is exactly similar. Theorem 3 thus implies that

min
t

{
A(t) + B(t)

2
(p+2) E(p)

}
> E(q) (2.6)

Optimizing the left-hand side over t, we find the critical point as follows. We define

F(t) = A(t) + (B(t))
2

p+2 E(p) = Ntq
2/p(p − q)

p(q + N)
+

(
q(p + N)

p(N + q)tq/p(p−q)

) 2
p+2

E(p). (2.7)

We now simplify the equation to find the critical point in terms of p and q. We define the
following:

n = q2/p m = q

p
(p − q)

(
2

2 + p

)
a1 =

(
N(p − q)

p(q + N)

)
and

b1 =
(

q(p + N)

p(N + q)

) 2
2+p

E(p).

Thus we have

F(t) = a1t
n + b1t

−m F ′(t) = a1ntn−1 − b1mt−m−1
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Figure 4. The functions P (q),Z(q) and Q(q) = P (q)Z(q) for the ground state in dimension
N = 3. Theorem 4 states that for the ground state in all dimensions N � 1, Q(q) is monotone
increasing with q.

for which the minimum occurs at t̂ = [
b1m
a1n

] 1
n+m . Meanwhile, the minimum value F(t̂) is

given by

F(t̂) = a1

[
b1m

a1n

] n
n+m

+ b1

[
b1m

a1n

]− m
n+m

= a
m

n+m

1 b
n

n+m

1

[m

n

]− m
n+m

[m

n
+ 1

]
� E(q).

By substituting F(t̂) and E(p) given by (1.9) in (2.6), we find that

(
N(p − q)

p(q + N)

) 2(p−q)

p(q+2)

[(
q(N + p)

p(q + N)

) 2
2+p

(
p + 2

2

)(
2P(p)2

p

) p

p+2
] q(2+p)

p(q+2)

×
[

q(p + 2)

2(p − q)

] 2(p−q)

p(q+2)
[
p(q + 2)

q(p + 2)

]
>

(
q + 2

2

) (
2P(q)2

q

) q

2+q

. (2.8)

By simplifying this expression, we find eventually that Q(q) = (1+q/N)1/qP (q) is monotone
increasing, that is to say

Q(p) > Q(q). (2.9)

Now for N � 2, P (q) is continuous, q > −2, (or for N = 1, q > −1), and, if we define
Z(0) = limq→0 Z(q) = e1/N , then Q(0) = Z(0)P (0). It follows immediately that Q(q) =
Z(q)P (q) is continuous and monotone increasing q > −2 (or for N = 1, q > −1). �

The three functions P(q), Z(q) and Q(q) are illustrated for N = 3 in figure 4: theorem 4
states that in all dimensions N � 1,Q(q) is a monotone increasing function of q.

3. Application

By using the monotonicity of the function Q(q), we now prove a special comparison theorem
(a corollary to theorem 4) for the comparison of eigenvalues generated by power-law potentials.
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Figure 5. Bounds on the eigenvalues EN
10(v) corresponding to the power potential V (r) = vr

3
2

in N dimensions. The upper and lower bounds (full lines) are obtained by harmonic oscillator
tangents EUP, and linear tangents ELP (theorem 5 (i), (ii)). The dashed curves EUQ and ELQ
represent, respectively, the improved upper and lower bounds (theorem 5 (iii), (iv)). Accurate
numerical data (dotted curves) EX are shown for comparison.

Theorem 5. Consider the power-law potentials Vi(r) = sgn(qi)r
qi , qi > −2, (qi > −1,

for N = 1), i = 1, 2, where q1 < q2. Let Z(q) = (1 + q/N)1/q , Z(0) = limq→ Z(q) =
e1/N,Q(q) = Z(q)P (q) and g(P, q) be given by (1.9a) and (1.9b), then

(i) E[V1] < EU
1 = g(P (q2), q1)

(ii) E[V2] > EL
1 = g(P (q1), q2)

(iii) E[V1] < EU
2 = g

(
Q(q2)

Z(q1)
, q1

)
< EU

1

(iv) E[V2] > EL
2 = g

(
Q(q1)

Z(q2)
, q2

)
> EL

1 .

Proof. We first establish the upper bound (iii). We note that the function Z(q) = (1 +q/N)1/q

is decreasing. Thus q1 < q2, implies Z(q2) < Z(q1), and by using the monotonicity of
the functions P(q) [2] and g(P, q), we may conclude that P(q1) < Z(q2)P (q2)/Z(q1) =
Q(q2)/Z(q1) < P(q2), which, in turn, implies E[V1] < EU

2 < EU
1 . This proves (i) and

(iii). After a reversal of the inequalities, the proofs for the lower bounds (ii) and (iv) follow
similarly. �

We note that theorem 5 includes applications to the log potential. For example, if q1 = 0
and q2 = q > 0, then we have from theorem 5 (iv)

E(q) > min
r>0

{(
Q(0)

Z(q)r

)2

+ sgn(q)rq

}
q > 0. (3.1)
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Example: V (r) = r
3
2 . We illustrate theorem 5 by applying it to the potential V (r) = r

3
2 in

N � 3 dimensions. We first use the linear and the harmonic oscillator problems to obtain
upper and lower bounds by envelope theory. That is to say, we first use equation (1.9a) to give
the envelope lower bound ELP given by g(P (1), 3/2), and the envelope upper bound EUP
given by g(P (2), 3/2). Then we use theorem 5 (iv) to generate the improved lower bound
ELQ given by g(Q(1)/Z(3/2), 3/2), and theorem 5 (iii) to generate the improved upper
bound EUQ given by g(Q(2)/Z(3/2), 3/2). These results are shown in figure 5, along with
accurate numerical data EX, for N = 3, . . . , 10: they illustrate the improvement obtained in
the approximation when Q is used rather then P in the semiclassical energy formulae.

4. Conclusion

The eigenvalues E(q) of H = −� + sgn(q)rq, q > −2, q �= 0, may be conveniently
represented by the functions P(q), which are known [2] to be positive, continuous and
monotone increasing. In the proof of the earlier result, each q-potential was written as a
smooth transformation of a p-potential with definite convexity, and then the ‘envelope theory’
was applied. The envelope method, in turn, depends on the ‘standard’ comparison theorem
of quantum mechanics. In the present paper we use a stronger comparison theorem, valid
for node-free states in N dimensions, and we are able thereby to learn more about P(q) for
the bottom of each angular momentum subspace (n = 1). If N > 1 and � > 0, we use the
equivalence EN

1� = E2�+N
10 . We have shown for all these problems that Q(q) = P(q)Z(q) is

monotone increasing, where the factor Z(q) = (1 + q/N)1/q is decreasing. This immediately
leads to some sharpened spectral inequalities concerning pairs of power-law Hamiltonians.

The P(q) functions are important for an established general lower bound for potentials
which are sums of powers. Thus, if V (r) = ∑

q a(q) sgn(q)rq + a(0) ln(r), then we have
[1, 31] for the bottom of each angular momentum subspace in N � 2 dimensions

EN
1� � min

r>0

{
1

r2
+

∑
q

a(q) sgn(q)
(
PN

1� (q)r
)q

+ a(0) ln
(
PN

1� (0)r
)}

.

This formula, which is easily extended to smooth mixtures defined by an integral, is exact
whenever the non-negative ‘weight’ a(q) is concentrated on a single term. The lower
bound is preserved if the P-numbers are replaced by lower bounds to them. Thus, any
information concerning these fundamental numbers for the power-law potentials immediately
has application to this general lower bound. These numbers have yielded useful energy bounds
also for the many-body problem [32], and for relativistic problems [33, 34].

In spite of the simplicity of the power-law potentials and the attractive scaling properties
of the corresponding Schrödinger eigenvalues, general results concerning the unit-coupling
eigenvalues E(q) seem to be difficult to obtain. One might expect that the results of the
present paper would extend to all the excited states, but we know of no way at present to prove
such general results. A proof of the apparent concavity of all the P(q) functions seems to be
even more elusive some of which are illustrated for N = 3 in figure 2. The establishment of
concavity of P(q) (or better, Q(q)) would immediately yield a large number of new spectral
inequalities arising from the use of tangents and chords to the corresponding graphs.
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Hall R L, Lucha W and Schöberl F F 2003 J. Math. Phys. 44 2724 (Preprint math-ph/0110015)
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